Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synchrotron X-ray wavelength calibration using a diamond internal standard: application to low-temperature thermal-expansion studies

Identifieur interne : 001940 ( Chine/Analysis ); précédent : 001939; suivant : 001941

Synchrotron X-ray wavelength calibration using a diamond internal standard: application to low-temperature thermal-expansion studies

Auteurs : RBID : Pascal:04-0602849

Descripteurs français

English descriptors

Abstract

Typically, wavelength instabilities at synchrotron beams are largely due to thermomechanical phenomena at the primary-beam monochromators and fluctuations of the synchrotron orbit. Although they are small, they may have a negative influence on some kinds of diffraction experiments, for example in thermal expansion studies. Using a wavelength calibration procedure is a natural way of solving or at least reducing this problem. Diamond can be used as a calibration material because of its known low-thermal expansion and low X-ray absorption. Low-temperature X-ray powder diffraction measurements were carried out at the powder diffractometer at the B2 beamline at Hasylab/DESY (Hamburg). The cryostat ensured a good temperature stability and accuracy. Unit-cell parameters for cubic (spinel-type) silicon nitride, c-Si3N4, and for copper indium selenide, CuInSe2, were determined in the temperature range from 14 up to 302 K. An improvement of the data quality due to elimination of the wavelength fluctuation effect is demonstrated.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0602849

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Synchrotron X-ray wavelength calibration using a diamond internal standard: application to low-temperature thermal-expansion studies</title>
<author>
<name sortKey="Paszkowicz, W" uniqKey="Paszkowicz W">W. Paszkowicz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46</s1>
<s2>Warsaw 02668</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>Warsaw 02668</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Knapp, M" uniqKey="Knapp M">M. Knapp</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institute for Materials Science, Darmstadt University of Technology</s1>
<s2>Darmstadt</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Darmstadt</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Materials Science and Engineering, Zhejiang University</s1>
<s2>Hangzhou 310027</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hangzhou 310027</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Baehtz, C" uniqKey="Baehtz C">C. Baehtz</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institute for Materials Science, Darmstadt University of Technology</s1>
<s2>Darmstadt</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Darmstadt</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Minikayev, R" uniqKey="Minikayev R">R. Minikayev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46</s1>
<s2>Warsaw 02668</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>Warsaw 02668</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Piszora, P" uniqKey="Piszora P">P. Piszora</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Faculty of Chemistry, Adam Mickiewicz University</s1>
<s2>Poznań</s2>
<s3>POL</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>Poznań</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, J Z" uniqKey="Jiang J">J. Z. Jiang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Materials Science and Engineering, Zhejiang University</s1>
<s2>Hangzhou 310027</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hangzhou 310027</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Physics, Technical University of Denmark</s1>
<s2>Lyngby</s2>
<s3>DNK</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Danemark</country>
<wicri:noRegion>Lyngby</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bacewicz, R" uniqKey="Bacewicz R">R. Bacewicz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75</s1>
<s2>00-662 Warsaw</s2>
<s3>POL</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>00-662 Warsaw</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">04-0602849</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 04-0602849 INIST</idno>
<idno type="RBID">Pascal:04-0602849</idno>
<idno type="wicri:Area/Main/Corpus">00AB62</idno>
<idno type="wicri:Area/Main/Repository">00AB54</idno>
<idno type="wicri:Area/Chine/Extraction">001940</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0925-8388</idno>
<title level="j" type="abbreviated">J. alloys compd.</title>
<title level="j" type="main">Journal of alloys and compounds</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Copper selenides</term>
<term>Crystal structure</term>
<term>Crystal symmetry</term>
<term>Cubic lattices</term>
<term>Indium selenides</term>
<term>Instrumentation</term>
<term>Investigation method</term>
<term>Lattice parameters</term>
<term>Silicon nitrides</term>
<term>Spinels</term>
<term>Synchrotron radiation</term>
<term>Thermal expansion</term>
<term>Thermal stability</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Diffraction RX</term>
<term>Rayonnement synchrotron</term>
<term>Dilatation thermique</term>
<term>Appareillage</term>
<term>Méthode étude</term>
<term>Stabilité thermique</term>
<term>Paramètre cristallin</term>
<term>Structure cristalline</term>
<term>Symétrie cristalline</term>
<term>Spinelles</term>
<term>Réseau cubique</term>
<term>Silicium nitrure</term>
<term>Cuivre séléniure</term>
<term>Indium séléniure</term>
<term>N Si</term>
<term>Si3N4</term>
<term>Cu In Se</term>
<term>6110N</term>
<term>CuInSe2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Typically, wavelength instabilities at synchrotron beams are largely due to thermomechanical phenomena at the primary-beam monochromators and fluctuations of the synchrotron orbit. Although they are small, they may have a negative influence on some kinds of diffraction experiments, for example in thermal expansion studies. Using a wavelength calibration procedure is a natural way of solving or at least reducing this problem. Diamond can be used as a calibration material because of its known low-thermal expansion and low X-ray absorption. Low-temperature X-ray powder diffraction measurements were carried out at the powder diffractometer at the B2 beamline at Hasylab/DESY (Hamburg). The cryostat ensured a good temperature stability and accuracy. Unit-cell parameters for cubic (spinel-type) silicon nitride, c-Si
<sub>3</sub>
N
<sub>4</sub>
, and for copper indium selenide, CuInSe
<sub>2</sub>
, were determined in the temperature range from 14 up to 302 K. An improvement of the data quality due to elimination of the wavelength fluctuation effect is demonstrated.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-8388</s0>
</fA01>
<fA03 i2="1">
<s0>J. alloys compd.</s0>
</fA03>
<fA05>
<s2>382</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Synchrotron X-ray wavelength calibration using a diamond internal standard: application to low-temperature thermal-expansion studies</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proceedings of the European Materials Research Society Fall Meeting, Symposium B, September 15-19, 2003, Warsaw, Poland</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>PASZKOWICZ (W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KNAPP (M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BAEHTZ (C.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MINIKAYEV (R.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PISZORA (P.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>JIANG (J. Z.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BACEWICZ (R.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>PASZKOWICZ (W.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>PELKA (J. B.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46</s1>
<s2>Warsaw 02668</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute for Materials Science, Darmstadt University of Technology</s1>
<s2>Darmstadt</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Materials Science and Engineering, Zhejiang University</s1>
<s2>Hangzhou 310027</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Faculty of Chemistry, Adam Mickiewicz University</s1>
<s2>Poznań</s2>
<s3>POL</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Department of Physics, Technical University of Denmark</s1>
<s2>Lyngby</s2>
<s3>DNK</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75</s1>
<s2>00-662 Warsaw</s2>
<s3>POL</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46</s1>
<s2>02-668 Warsaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>European Materials Research Society (E-MRS)</s1>
<s2>67037 Strasbourg</s2>
<s3>FRA</s3>
<s9>patr.</s9>
</fA18>
<fA20>
<s1>107-111</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1151</s2>
<s5>354000122631830160</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>13 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0602849</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of alloys and compounds</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Typically, wavelength instabilities at synchrotron beams are largely due to thermomechanical phenomena at the primary-beam monochromators and fluctuations of the synchrotron orbit. Although they are small, they may have a negative influence on some kinds of diffraction experiments, for example in thermal expansion studies. Using a wavelength calibration procedure is a natural way of solving or at least reducing this problem. Diamond can be used as a calibration material because of its known low-thermal expansion and low X-ray absorption. Low-temperature X-ray powder diffraction measurements were carried out at the powder diffractometer at the B2 beamline at Hasylab/DESY (Hamburg). The cryostat ensured a good temperature stability and accuracy. Unit-cell parameters for cubic (spinel-type) silicon nitride, c-Si
<sub>3</sub>
N
<sub>4</sub>
, and for copper indium selenide, CuInSe
<sub>2</sub>
, were determined in the temperature range from 14 up to 302 K. An improvement of the data quality due to elimination of the wavelength fluctuation effect is demonstrated.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60A10N</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>XRD</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Rayonnement synchrotron</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Synchrotron radiation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Dilatation thermique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Thermal expansion</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Appareillage</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Instrumentation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Méthode étude</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Investigation method</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Método estudio</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Stabilité thermique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Thermal stability</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Paramètre cristallin</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Lattice parameters</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Structure cristalline</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Crystal structure</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Symétrie cristalline</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Crystal symmetry</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Spinelles</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Spinels</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Réseau cubique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Cubic lattices</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Silicium nitrure</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Silicon nitrides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Cuivre séléniure</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Indium séléniure</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>N Si</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Si3N4</s0>
<s4>INC</s4>
<s5>54</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Cu In Se</s0>
<s4>INC</s4>
<s5>55</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>6110N</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>CuInSe2</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>48</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>48</s5>
</fC07>
<fC07 i1="02" i2="3" l="FRE">
<s0>Métal transition composé</s0>
<s5>49</s5>
</fC07>
<fC07 i1="02" i2="3" l="ENG">
<s0>Transition element compounds</s0>
<s5>49</s5>
</fC07>
<fN21>
<s1>348</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>European Materials Research Society Fall Meeting. Symposium B</s1>
<s3>Warsaw POL</s3>
<s4>2003-09-15</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001940 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 001940 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:04-0602849
   |texte=   Synchrotron X-ray wavelength calibration using a diamond internal standard: application to low-temperature thermal-expansion studies
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024